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ABSTRACT

In this talk, we briefly review the influence functional path-integral treatment of quan-

tum Brownian motion. We report on a newly derived exact master equation of a quantum

harmonic oscillator coupled to a general environment at arbitrary temperature. We apply

it to the problem of loss of quantum coherence.
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INTRODUCTION

Recently there has been considerable interest in quantum Brownian motion. It was

motivated by possible observation of macroscopic effects in quantum systems. Among

them are quantum tunneling with dissipation [1], loss of quantum coherence due to system-

environment interaction [2], just name a few. The newest application of quantum Brownian

motion is in quantum cosmology, where the issue of quantum-to-classical transition of an

open system is very important [3]. These issues also appear in semiclassical theory of

early universe in which noise, fluctuation and dissipation play important roles in particle

production, back reaction, phase transition, inflation and galaxies formation [4]. In these

problems, the interaction between a system and its environment is quite complicated giving

rise to nonlocal dissipation and colored noise.

The effect of nonlocal dissipation and colored noise in quantum Brownian motion is

an outstanding problem, which has been studied only to a limited extent. In some limiting

cases, the quantum master equation (the time evolution equation) for the reduced density

matrix of the Brownian motion has been derived before by different authors with different

methods. These cases are all in the class of ohmic environment, for which the dissipation

is always local [5]. It corresponds to having a linear damping force proportional to the

velocity of the Brownian particle classically. The noise associated with the dissipation is

colored at low temperature.

Our contribution reported in this talk is the derivation of an exact master equa-

tion for the reduced density matrix of a Brownian harmonic oscillator linearly coupled to

a general environment (with a general thermal bath spectral density) at arbitrary tem-

perature [6]. In our model, the environment is a set of bath harmonic oscillators with

different natural frequencies. The environment is at a thermal equilibrium state. The

system (Brownian particle) is brought to contact with this thermal bath. The derivation is

done from first principles of statistical and quantum physics with Feynman path-integral
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method and Feynman-Vernon influence functional formalism [7]. This master equation

can accommodate all possible forms of the nonlocal dissipation kernel and nonlocal noise

kernel. It is a linear partial differential equation with time dependent coefficients. The

non-Markovian character resides in these coefficients. In particular we examine the cases

of ohmic, subohmic and superohmic environment and compute these time dependent co-

efficients numerically. We show that all the previous master equations obtained otherwise

are just special examples of our master equation.

INFLUENCE FUNCTIONAL

Let us briefly review the Feynman-Vernon influence functional formalism of quantum

open system. Consider a Brownian particle with mass M = 1 and natural (bare) frequency

_. The environment is modeled by a set of harmonic oscillators with mass mn and natural

frequency wn. The Brownian particle is coupled linearly to each bath oscillator with

strength Cn. The total action of the combined system plus environment is

S[x,q]= S[x]+ SE[q]+ si.,[x, q]

+/0''SZfCnXqnl
 sE{1 1. 2_q_- 2_q_} (1)

where x and qn are the coordinates of the particle and the n-th bath oscillators.

It is well known that the time evolution of the total density matrix of the system plus

environment _(t) is governed by the following quantum Liouville equation

• d^ [H, _(t)],h_p(t) = (2)

In the coordinate representation, the solution of the above quantum Liouville equation can
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be written as

-t-cw +(x) +oo +oo

--00 --00 --00 --00

' ' '-0)x Y(xs, qf, x_,@,tlxi,qi,x_,qi,O ) p(xi,qi;xi,qi,

(3)

where
I i 0J(xl,qs,x),q),t l x,,qi,xi,q,, )

# #

XJ X f qn I qns

:i..iox,i.,io,
Xi X( qni tqnlI

exp_{S[x,q]- S[x',q']} (4)

is the propagator of the total density matrix in path-integral form. Here q represents the

full set of bath oscillator coordinates and the subscript i and f denote the initial and final

variables.:

We are only interested in how the dynamics of the system (the Brownian particle)

under the influence of the environment (all bath oscillators). The quantity containing this

information is the reduced density matrix of the system

-t-oo -t-_

--OO --OO

q;x',q')5(q-q') (5)

which is propagated in time by the the evolution operator

--00 --00

I i

X's,t l =,,x,,O) pr(=,,x,,o ) (6)

If we assume that at t = 0 the system and the environment are uncorrelated

_;(t= o)= _.(o) × _(o), (7)

then

' 0)=&(zs,x's,t l zi,zi,

l

x! x!

l.xl.,
=i X(

i
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exp _ {S[.] - S[x']} F[x, x'] (8)



The functional factor FIx, x'] in (8), called influence functional, is defined as

+oo +oo +oo q! q!

",...',:I'_,I'_.I",:I"_So_'
--oo --oo --oo qi q_ (9)

It is first introduced by Peynman and Vernon [7].

For the problem described by (1), the influence functional can be computed exactly.

The result is:

t 81

i ids2[x(s,) x'(s,)]r1(s, s2)[x(s2)+x'(s2)].I.,.,=e-.{-./'.l- -
0 0

l sl

'_f _,I'..[-.,)'.,)_-.,-)I-..)...)]}
0 0

(10)

where

is the noise kernel, also

-1-OO

0

d

_(_)= _ _(_)

COS _8 (11)

(12)

and
-+OO

_(_) f d_ I(_)= -- COS 0.,18
u¢

0

is dissipation kernel. Here I(w) is the dissipation spectral density defined as

(13)

2

I(w) = E 5(a_ -wn),) Cn (14)
_?TlnOJ n

n

The kernels r/(s) and v(s) are generally non-local. There exists an important relation

between the noise and dissipation kernels, known as the fluctuation-dissipation relation.

It can be written as
-+00

.(s) = f d_'
--00

K(s - s') 7(s') (15)
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where the kernel K(s) is

+oo

= -- w coth hw
7r

0

cosws (16)

which is independent of the dissipation spectral density I(w)

EXACT MASTER EQUATION

The detailed derivation of the exact master equation of a quantum harmonic oscillator

with influence functional (10) has been published in Ref.: [6]. Here we just give that

equation below

0

ih_ pr(z, x', t)
[ h2 02

= l--_ (_2

+ _a_(t)(x 2- x,2)pr(x,_',t)

- i_r(t)(z - z')( O O_,)p_(x,x',t)

- ir(t)h(t)(x - x') 2 p_(z,z',t)

, a a t)
+ hF(t)f(t)(z - x )(_x + -_;x') p,(x,x',

_2°2) + _-a_(x2_ _,2)} p,(x,_',t)

(17)

where the time dependent coefficients are

d,(t)
r(t)- 2_1(_)

5_2(t) = d2(t) - 2r(t)_2(t)

f(t) = 2 a12(t) e2(t) - cl(t)
_2(o----_ + 2r(t)_2(o)

h(t) = u2(t) f(t) + 8 all(t) +
el(t)- c2(t)

r(t)

The time dependent functions ci(t), di(s) and el(t) in (18) to (21) are

t t t

0 0 o

+ a:_(_,_,)].(_ - _)_(_)

(18)

(19)

(20)

(21)

(22)

i
i
!
=
i

i
!
!
!
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t

2 / ds rl(t- s)ui(s) (23)di(t)

0

t

el(t) = /ds v(s)ui(s) (24)

P

0

The elementary functions ui(s) satisfy the following boundary value problem

$

d_2 +2 e_'_(_-_')u,(J)+_g_,(8)=o (28)
0

Ul(O)= 1, Ul(_)= o u2(o)= o, _2(t) = 1

and

v,(8) = _2(t - 8) v2(_)= u,(t - 8) (26)

The Green function G12(8,,82) in (22) is

G12(8,,82) = u l ( 81 )'/z2( 82)0(81 - 82) - 112(81)u,(82)0(S 2 - 8,)
_1(82)U2(82) _ U1(32)?_2(82 ) (27)

A similar expression for G21(sz,82) can be written in terms of v,(8). In all the above

equations, the index i runs from 1 to 2.

Let us take a closer look of this master equation. The first line corresponds to the usual

unitary Liouvillian evolution, which is independent of the system-bath interaction. The

second line corresponds to a time-dependent frequency shift (frequency renormalization).

The third line contains a dissipative term with a time-dependent dissipative coefficient

F(t). The last two lines contain two diffusive terms with time-dependent coefficients. All

of these terms depend on the system-bath coupling. Further, one can see that all these time-

dependent coefficients vanish at t = 0, when the initial uncorrelated condition is assumed

valid. The frequency shift and the dissipation coefficient depend only on the dissipation

kernel while the diffusion coefficients depend on the noise kernel. From (11), (12) and (13),

we find all these time dependent coefficients are determined by the dissipation spectral

density (14).
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A simpler closed formula for the time-dependent coefficients in the master equation

can be found in the weak coupling limit (up to the first order in the coupling constant

between the system and the bath),

t
t

5ft2(t) = 2 / ds rl(s ) cosf_s (28) i

0

t _--

1 / ds r/(s ) sinfts (29)r(t) =
0

t

F(t)f(t) = -_ ds v(s) sinf_s (30) '

0

t

r(t)h(t) = f ds v(s) cosf_s (31) -
0

!

i

I

EXAMPLES

An important class of dissipation spectral density is

2 02 )n--1 '°2
I(w) = _70w(5 e- A-'r (32)

where A is the physical cutoff frequency and & is another frequency scale usually taken to

be A. The environment is classified as ohmic if n = 1, as supra-ohmic if n > 1 or as sub-

ohmic if 0 < n < 1. It is important to introduce the physical cutoff frequency because, on

physical grounds, one expects the spectral density to go to zero for very high frequencies.

It is clear to see that after introducing the physical cutoff frequency, the dissipation kernel

(13) is a non-local kernel even for the ohmic environment.

We have numerically computed the coefficients of the master equation given by (18)

to (21) for three different environments, namely, ohmic (n = 1), subohmic (n = 0.5)

and superohmic (n = 3). The damping constant is % = 0.3 and the cutoff frequency
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is A = 2000. The bare frequency fi is determined from the renormalized one, namely,

fi2 = _2 + 5fl2 __ f12 = 1 (see explanation in Ref. [6]). Both high temperature region

(T = 105) and low temperature region (T = 10) have been studied. The numerical plots

of these time dependent coefficients and detail analysis could be found in Ref. [6].

APPLICATION: QUANTUM DECOHERENCE

As a simple application,, we discuss the damping of the interference between two

Gaussian wave packets [8].

Let ¢1,2(x, t) be the wave functions of Gaussian wave packets located initially (t = 0)

at x = +x0 respectively with the same initial spread a

_)l,2(X, 0) = Ne-_ (33)

Let ¢(x, t) be the wave function of a system consisting of the superposition of these two

wave packets,

¢(x,t) = ¢l(x,t) + ¢2(x,t) (34)

The density matrix of the system can be written as the sum of three parts

p(x, x',t) = ¢(x,t)¢t(x',t) = pl(x,x',t) + p2(x, x',t) + Pi,t(x,x',t) (35)

The probability density function

P(x,t) =1 ¢(x,t)12= p(x,x,t) (36)

can also be written as the sum of three parts

Pl(x,t) = Pl(x,t) + P2(x,t) + Pint(x,t) (37)

By using the influence functional (10) and the master equation (17), we get

±
P1,2(x,t) =/_r(t) exp [ 2a2(t) ] (38)L
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and

p_.,(x,t) = 2x/sl(x,t)_e-s(o cos¢(t) (39)

where

_1(0)
x0(0 = _(0)x° (40)

and

a(t) = [_ + _) + 4a,__,O,/uSI,)J (41)

are respectively the position and spread of the wave packet at time t,

2_0[_(0)z + _(0)z0]
¢(t) =

1 + 8a, l(t)c_ 2 + 4_12(0)a t

is the oscillatory angle (which is present even in the absence of the environment) and

(42)

D(t) = 4all(t)x]
1 + 8all(t)a 2 + 4h_(O)a 4 (43)

is the decay factor (which is present only because of the environment). It is this last term

depicting the decay of interference between the two wave packets which is usually regarded

as providing a measure of decoherence.

We have numerically computed the decay factor e -D(t) for all the cases described in

the previous section. The results could be found in Ref. [6].
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